
HiDISC: A Decoupled Architecture for Applications

 in Data Intensive Computing

Drs. Alvin Despain and Jean-Luc Gaudiot

Final Report

Abstract

The ever growing speed gap between processor and main memory has been a major

performance bottleneck of modern computer systems. As a result, today’s data intensive

applications suffer from frequent cache misses and lose many CPU cycles due to pipeline

stalling. Although traditional prefetching methods reduce cache misses considerably,

most of them strongly depend on the access pattern being predicted and fail when faced

with irregular memory access patterns with low locality.

This report presents our design and performance evaluation of a novel, high-

performance decoupled architecture called HiDISC (Hierarchical Decoupled Instruction

Stream Computer). HiDISC provides low memory access latency by introducing

enhanced data prefetching techniques at both hardware and software levels. Three

dedicated processors for each level of the memory hierarchy act in concert to mask the

memory latency.

As required by the DARPA Data Intensive program, we used as our performance

evaluation benchmarks the Data-intensive Systems Benchmark Suite and the DIS

Stressmark suite. The simulation results for both benchmarks show a distinct advantage

of the HiDISC system over current prevailing superscalar architectures.

i

Table of Contents

1. Introduction..1

2. Method, Assumptions, and Procedures..3

2.1 The HiDISC System...3

2.2 Experimental Environment...6

2.3 Operation of the HiDISC Compiler..7

2.4 Benchmark Description..11

3. Results and Discussion...13

3.1 Simulation Parameters..13

3.2 Benchmarks Results ...14

3.3 Discussion...16

4. Conclusions..19

5. Recommendations..20

5.1 Future Enhancements to the HiDISC ...20

5.2 Flexi-DISC ...21

Appendix A: Compiler and Simulator Description...28

Appendix B: Raw Performance Data..32

ii

List of Figures

Figure 1: The speed mismatch between CPU cycle and DRAM speed..............................1

Figure 2: The HiDISC System..4

Figure 3: Inside the HiDISC architecture..5

Figure 4: Discrete Convolution as processed by the HiDISC Compiler.............................6

Figure 5: Simulation Procedure...7

Figure 6: Overall HiDISC stream separator..8

Figure 7: Backward chasing of load/store instructions...10

Figure 8: Separation of sequential code..11

Figure 9: DIS benchmark performance results ...15

Figure 10: Stressmark performance results...16

Figure 11: The three-Ring Flexi-DISC Architecture..22

Figure 12: Multiple application sharing of the Flexi-DISC model23

Figure 13: The HiDISC Compiler...28

Figure 14: Deriving PFG Graph..29

iii

List of Tables

Table 1: Simulated Benchmark Description ...12

Table 2: Simulation Parameters..14

1

1. Introduction

The speed mismatch between processor and main memory has been a major performance

bottleneck in modern processor architectures. Processor speed has been improving at a

rate of 60% per year during the last decade. Conversely, access latency to main memory

has been improving at less than 10% per year [24]. This speed mismatch – the Memory

Wall problem - results in considerable cost in terms of cache misses and severely

degrades processor performance. The problem becomes even more acute when faced

with highly data intensive applications. Indeed, these applications are becoming more

prevalent. By definition, they have a higher memory access/computation ratio than

“conventional” applications. Moreover, the access pattern tends to be more irregular. As

a result, the penalty caused by cache misses is becoming even more serious. This means

that the architect must either reduce pipeline stalling upon cache misses or reduce the

number of those cache misses (incidentally, this latter objective is the main goal of the

HiDISC project).

µProc
60%/yr

.

DRAM
7%/yr.

1

10

100

1000

1980 1981 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

DRAM

CPU

1982

Processor-Memory
Performance Gap:
(grows 50% / year)

Figure 1: The speed mismatch between CPU cycle and DRAM speed

Reaching higher Instruction-Level Parallelism (ILP) through multiple instruction

issue and out-of-order execution has been an essential part of modern processor design

for many years. Moreover, sophisticated branch prediction and speculative execution

techniques provide more opportunities for the discovery of independent instructions

across basic blocks [31]. Various approaches using Thread-Level Parallelism (TLP) have

also been introduced to deliver more ILP. During the last decade, superscalar and very

2

long instruction word (VLIW) architectures have played an important role in ILP

research. Although both models are designed to deliver higher levels of parallelism

through multiple instruction issue, the ever increasing memory access latency has become

a major obstacle to the exploitation of higher degrees of ILP.

To solve the memory wall problem, current high performance processors are

designed with large amounts of integrated on-chip cache. However, this large cache

strategy works efficiently only for applications which exhibit sufficient temporal or

spatial locality. Newer applications such as multi-media processing, database, embedded

processor, automatic target recognition, and any other data intensive programs exhibit

irregular memory access patterns [15] and result in considerable numbers of cache misses

which cause significant performance degradation.

To reduce the occurrence of cache misses, various prefetching methods have been

developed. Prefetching is a mechanism by which data is fetched from memory to cache

before it is even requested by the CPU. It can be implemented either in hardware or in

software. Hardware prefetching [6] dynamically adapts to the runtime memory access

behavior and decides the next cache block to prefetch. Software prefetching [20] usually

inserts the prefetching instructions inside the code. Although previous prefetching

research considerably contributed to improvements in cache performance, prefetching

techniques still suffer from irregular memory access patterns. Indeed, typical prefetching

strategies strongly depend on the predictability of the future data addresses. This is very

difficult to predict when the access patterns are random [19]. Moreover, many current

applications use sophisticated data structures with pointers which dramatically lower the

regularity of memory accesses.

The Data Intensive Systems Benchmark Suite and the DIS Stressmark Suite are

used in this project as our performance evaluation benchmarks. Both benchmarks are

provided by Atlantic Aerospace Electronics Corporation [38][39] and supported by the

Data Intensive Systems project of the DARPA Information Technology Office.

Stressmark includes seven small data intensive benchmarks. Conversely, the DIS

3

benchmarks consist of five codes more realistic than Stressmark. The five benchmarks

can be categorized into three groups:

1. The Model based image generation group has two benchmarks – Method of

Moments and Simulated SAR Ray Tracing.

2. The Target detection includes Image Understanding and Multidimensional

Fourier Transform.

3. The Data Management benchmark

2. Method, Assumptions, and Procedures

In order to counter the inherently low locality in Data Intensive applications, our design

philosophy is to emphasize the importance of memory-related circuitry and even employ

two dedicated processors to respectively manage the memory hierarchy and prefect the

data stream.

2.1 The HiDISC System

Access/Execute decoupled architectures have been developed as alternate processor

architectures which exploit the parallelism between data access operations and “normal”

computation. Concurrency is achieved by separating the original, single instruction

stream into two streams based on the functionality of instructions. Asynchronous

operation of the streams provides for a certain distance between the streams and makes

data prefetching possible. The HiDISC architecture is an enhanced variation of

conventional decoupled architectures.

Decoupled architectures (also called Access/Execute architectures) deliver higher

degrees of Instruction-Level Parallelism by separating the sequential code into two

instruction streams - Access Stream and Execute Stream - based on memory access

functionality. Each stream runs almost independently of the other. The model was

originally developed to tolerate long memory latencies: hopefully, the Access Stream will

run ahead of the Execute Stream in an asynchronous manner, thereby allowing timely

4

prefetching. It should be noted at this point that an extremely important parameter will

be the “distance” between the instruction currently producing a data element in the

Access Stream and the instruction which uses it in the Execute Stream. This is also

called the slip distance, and it will be shown how it is a measure of tolerance to high

memory latencies. Communication is achieved via a set of FIFO queues (they are

architectural queues between the two processors to guarantee the correctness of program

flow).

Our HiDISC (Hierarchical Decoupled Instruction Stream Computer) architecture

is a variation of the traditional decoupled architecture model. In addition to the two

processors of the original design, the HiDISC comprises one more processor for data

prefetching [6][8] (Figure 2). A dedicated processor for each level of the memory

hierarchy timely supplies the necessary data for the above processor. Thus, three

individual processors are combined in this high-performance decoupled architecture.

They are used respectively for computing, memory access, and cache management:

Program Compiler

Load/Store Instructions

ALU Instructions

Cache Mgmt. Instructions

Computation
Processor (CP)

Registers

Access
Processor (AP)

L1 Cache

Cache Management
Processor (CMP)

Memory
Hierarchy

Figure 2: The HiDISC System

• Computation Processor (CP): executes all primary computations except for

memory access instructions.

• Access Processor (AP): performs basic memory access operations such as

loads and stores. It is responsible for passing data from the cache to the CP.

5

• Cache Management Processor (CMP): keeps the cache supplied with data

which will be soon used by the AP and reduces the cache misses, which

would otherwise severely degrade the data preloading capability of the AP.

By allocating additional processors to each level of the memory hierarchy, the

overhead of generating addresses, accessing memory, and prefetching is removed from

the task of the CP: the processors are decoupled and work relatively independently of one

another.

Access Processor
(AP)

Cache Mgmt.
Processor (CMP)

Registers

Computation
Processor (CP)

L1 Cache

Slip Control
Queue

Store Data
Queue

Store Address
Queue Load Data

Queue

L2 Cache
and Higher Level

Figure 3: Inside the HiDISC architecture

Now, our compiler must appropriately form three streams from the original

program: the computing stream, the memory access stream, and the cache management

stream are created by the HiDISC compiler and stored into the program memory of each

of the processors. As an example, Figure 4 shows the stream separation for the inner

loop of the discrete convolution algorithm.

The control flow instructions are executed by the AP. Incidentally, it should be

noted that additional instructions are required in order to facilitate the synchronization

between the processors. Also, the AP and the CP use specially designed tokens to ensure

correct control flow: for instance, when the AP terminates a loop operation, it simply

6

deposits the End-Of-Data (EOD) token into the load data queue. When the CP sees an

EOD token in the load data queue, it exits the loop.

for (j = 0; j < i; ++j)
 y[i]=y[i]+(x[j]*h[i -j -1]);

I nner Loop Convolution

while (not EOD)
 y = y + (x * h);
send y to SDQ

Computation Processor Code

for (j = 0; j < i; ++j) {
 load (x[j]);
 load (h[i-j-1]);
 GET_SCQ;
}
send (EOD token)
send address of y[i] to SAQ

SAQ: Store Address Queue
SDQ: Store Data Queue
SCQ: Slip Control Queue
EOD: End of Data

for (j = 0; j < i; ++j) {
 prefetch (x[j]);
 prefetch (h[i-j-1];
 PUT_SCQ;
}

Access Processor Code

Cache M anagement Code

Figure 4: Discrete Convolution as processed by the HiDISC Compiler

2.2 Exper imental Environment

In order to evaluate the performance of our proposed architecture, we have designed a

simulator for our HiDISC architecture. It is based on the SimpleScalar 3.0 tool set [5]

and it is an execution-based simulator which describes the architecture at a level as low

as the pipeline states in order to accurately calculate the various architectural delays.

Figure 5 shows a high-level block diagram of the simulation procedure. Each

benchmark program follows the two steps described. The first step consists in compiling

the target benchmark using the HiDISC compiler which we have designed, while the

second step is the simulation and performance evaluation phase.

7

HiDISC
Simulator

gcc

PFG
generator

Stream
separator

Sequential executable

Benchmarks

HiDISC executable

Dependency information

HiDISC Compiler

HiDISC executable

CMP

AP

Performance results

CP

Simulation and
Performance Evaluation

Figure 5: Simulation Procedure

2.3 Operation of the HiDISC Compiler

The HiDISC executables are produced by our HiDISC compiler. The core operation of

the HiDISC compiler is stream separation. Stream separation is achieved by backward

chasing of load/store instructions based on the register dependencies. This means that, in

order to obtain the register dependencies between instructions, a Program Flow Graph

(PFG) must be derived. Indeed, the PFG generator and the stream separator are two

major operations of the HiDISC compiler. The PFG generator and the stream separator

are adopted after some modifications from the SimpleScalar 3.0 tool set and integrated in

the HiDISC compiler.

Figure 6 depicts the overall HiDISC compiler. Its detailed operation is described

below.

8

Sequential Source

1: Deriving the Program
Flow Graph

3: Instruction Chasing for
Backward Slice

2: Defining Load/Store
Instructions

Computation
Stream

Access
 Stream

Insert Communication Instructions

Computation
Code

Access
 Code

Cache Management
Code

Insert prefetch
Instructions

Figure 6: Overall HiDISC stream separator

The input to the HiDISC compiler is a conventional sequential binary code. The

first step (1: Deriving the Program Flow Graph in Figure 6) consists in uncovering the

data dependencies between the instructions. Each instruction is analyzed so as to

determine which its parent instructions are. This determination is based on the source

register names. Whenever the stream separator meets any load/store instruction in step 2

(2: Defining Load/Store Instructions), it defines the instruction as the Access Stream

(AS) and chases backward to discover its parents instruction. The next step (3:

Instruction Chasing for Backward Slice) is designed to handle the backward chasing of

pointers. The instructions which are chased according to the data dependencies are called

the backward slice of the instruction from which we started.

Since the Access Stream should contain all access-related instructions, as well as

the address calculation and index generation instructions, the backward slice should be

included in the Access Stream as well. It should be noted that all the control-related

instructions are also part of the Access Stream. The instructions which should belong to

the control flow are determined by a similar method. After defining all the Access

Stream, the remaining instructions are, by default, classified as belonging to the

Computation Stream (CS).

In addition to the stream separation, appropriate communication instructions

should be placed in each stream in order to synchronize the two streams. Finding what

9

the required communications are is also based on the register dependencies between the

streams. Essentially, when it is determined that some required source data is produced by

the other stream, some kind of communication should take place. For instance, when a

memory load (inside the Access Stream) produces a result which should be used by the

Computation Stream, a Load instruction would be inserted in the Access Stream. It

would send the data to the Load Data Queue (LDQ). However, if the result of that load

was not needed by the Computation Stream, then obviously no such insertion would be

needed. Similarly, when the result produced by the Computation Stream is used by a

store instruction (inside the Access Stream), it should be sent to the store data queue

(SDQ) by inserting an appropriate communication instruction.

The backward chasing starts whenever we encounter new load/store instruction.

The backward chasing ends when the procedure meets any instruction which already has

been defined as the Access Stream. The parent instructions of any defined Access

Stream have already been chased.

After separating the Access Stream and the Computation Stream, the CMP stream

is constructed by modifying the Access Stream. The instruction stream for the CMP is

indeed quite similar to the Access Stream. Only the load instructions are replaced with

the prefetch instructions for the CMP stream.

Figure 7 shows an example of the operation of the backward slicing mechanism in

the HiDISC compiler. The assembly code input to the HiDISC compiler is the PISA

(Portable Instruction Set Architecture) which is the instruction set of the SimpleScalar

simulator [5]. We have selected for this example the inner product of Livermore loop

(lll1). The PISA code is compiled into SimpleScalar binary by first using a version of

gcc which targets SimpleScalar.

Initially, each memory access instruction is defined as belonging to the Access

Stream. For example, the l.d instruction in the fifth line (pointed to by an arrow
�

 in the

left margin) can be immediately determined as belonging to the AS. Moreover, every

parent instruction of a memory access instruction should be identified. In the example,

the addu instruction in the fourth line (pointed to by an arrow �) - due to the register $9

10

- and the mul instruction in the second line (pointed to by an arrow �) -due to the

register $25 - are also chased and marked as belonging to the AS. Likewise, other

instructions are examined based on the above approach. The instructions in the shaded

box in Figure 7 belong to the Access Stream.

lw $24, 24($sp)
mul $25, $24, 8
la $8, z
addu $9, $25, $8

 l.d $f16, 88($9)
l.d $f18, 0($sp)
mul.d $f4, $f16, $f18
l.d $f6, 8($sp)
l.d $f8, 80($9)
mul.d $f10, $f6, $f8
add.d $f16, $f4, $f10
la $10, y
addu $11, $25, $10
l.d $f18, 0($11)
mul.d $f6, $f16, $f18
l.d $f8, 16($sp)
add.d $f4, $f6, $f8
la $12, x
addu $13, $25, $12
s.d $f4, 0($13)

x[k] = q + y[k]* (r* z[k+10] + t*z[k+11]);

Computation Stream
 Access Stream

Backward chasing

Communicate via LDQ

Communicate via SDQ

�
 �
 �
 �

Figure 7: Backward chasing of load/store instructions

After defining each stream, the communication instructions should be inserted.

The red lines in Figure 7 (forward arrows, solid lines) show the necessary

communications from the AS to CS. For example, the mul.d instruction (which is

marked as being inside the Computation Stream, pointed to by arrow �) in the seventh

line requires data from the other instruction stream (The Access Stream). Therefore, both

l.d instructions in the fifth and sixth line need to send data to LDQ. Likewise, the purple

line at the bottom (forward arrow, dotted line) also shows the communication from the

CS to the AS via the Store Data Queue (SDQ).

Figure 8 shows the complete separation of the two streams and insertion of the

communication instructions.

11

LDQ

SDQ

lw $24, 24($sp)
mul $25, $24, 8
la $8, z
addu $9, $25, $8

 l.d $LDQ, 88($9)
l.d $LDQ, 0($sp)
l.d $LDQ, 8($sp)
l.d $LDQ, 80($9)
la $10, y
addu $11, $25, $10
l.d $LDQ, 0($11)
l.d $LDQ, 16($sp)
la $12, x
addu $13, $25, $12
s.d $SDQ, 0($13)

x[k] = q + y[k]* (r* z[k+10] + t*z[k+11]);

Computation Stream

Access Stream

mul.d $f4, $LDQ, $LDQ
mul.d $f10, $LDQ, $LDQ
add.d $f16, $f4, $f10
mul.d $f6, $f16, $LDQ
add.d $SDQ, $f6, $LDQ

Figure 8: Separation of sequential code

2.4 Benchmark Descr iption

Applications causing large amounts of data traffic are often referred to as data-intensive

applications as opposed to computation intensive applications. Inherently, data-intensive

applications use the majority of the resources (time and hardware) to transport data

between the CPU and the main memory. The tendency for a higher number of

applications to become data intensive has become quite pronounced in a variety of

environments [39]. Indeed, many applications such as Automatic Target Recognition

(ATR) and database management show non-contiguous memory access patterns and

currently result in idle processors due to data starvation. These applications are more

stream-based and result in more cache misses due to lack of locality.

Frequent use of memory dereferencing and pointer chasing also creates an

enhanced pressure on the memory system. Pointer-based linked data structures such as

lists and trees are used in many current applications. For one thing, the increasing

popularity of Object Orient Programming correspondingly increases the underlying use

of pointers. Due to the serial natural of pointer processing, memory accesses become a

severe performance bottleneck of existing computer systems. Flexible, dynamic

construction allows linked structures to grow large and difficult to cache. At the same

12

time, linked data structures are traversed in a way that prevents individual accesses from

being overlapped since they are strictly dependent upon one another [26].

The applications for which our HiDISC is designed are obviously data intensive

programs, the performance of which is strongly affected by the memory latency. As

required by the Data Intensive Systems project of the DARPA Information Technology

Office, we used for our benchmarks the Data-intensive Systems Benchmark Suite [39]

and DIS Stressmark Suite [38] provided by the Atlantic Aerospace Electronics

Corporation. Both of the benchmarks are targeting data intensive applications. The DIS

benchmarks are five benchmarks codes, which are more realistic and larger than

Stressmark. Stressmark includes seven small data intensive benchmarks, which extracts

and shows the kernel operation of data intensive programs.

Due to problems with the input data file, the Image Understanding benchmark

cannot be executed. Also, since the Corner-Turn benchmark among seven Stressmarks is

not provided with the source code, we only simulated the other six Stressmarks.

Table 1 shows the characteristics of each of the benchmarks simulated.

Table 1: Simulated Benchmark Descr iption

Benchmark Name Problem Characteristic

Method of
Moments

Computing the
electromagnetic
scattering from
complex objects

Containing
computational
complexity and
requesting high
memory speed

Multidimensional
Fourier

Transform
Fourier Transform

Wide range of
application usage

Data
Management

Traditional DBMS
processing

Index algorithms and
ad hoc query
processing

DIS
benchmarks

SAR Ray
Tracing

SAR image
simulation

Utilizes Image-domain
approach

13

Pointer Pointer following

Small blocks at
unpredictable

locations. Can be
parallelized

Update
Pointer following

with memory update
Small blocks at

unpredictable location

Matrix
Conjugate gradient

simultaneous
equation solver

Dependent on matrix
representation Likely

to be irregular or
mixed, with mixed

levels of reuse

Neighborhood

Calculate image
texture measures by

finding sum and
difference histograms

Regular access to pairs
of words at arbitrary

distances

Field
Collect statistics on
large field of words

Regular, with little re-
use

Stressmark

Transitive
Closure

Find all-pairs-
shortest-path solution
for a directed graph

Dependent on matrix
representation, but
requires reads and
writes to different

matrices concurrently

3. Results and Discussion

We used our architectural simulator of the HiDISC machine to evaluate the performance

of all the benchmarks except two.

3.1 Simulation Parameters

In our benchmark simulations, we assumed the architectural parameters outlined in Table

2. The baseline architecture for the comparison is a 4-way superscalar architecture,

which is implemented as sim-outorder in the SimpleScalar 3.0 tool set. In both cases, the

memory access latency has been made to vary between 20 and 120 CPU cycles. The

baseline superscalar architecture supports out-of-order issue with 16 register update units

and 8 load store queues.

14

Table 2: Simulation Parameters

Branch predict mode Bimodal
Branch table size 2048

Issue width 4
Window size for superscalar RUU: 16 LSQ: 8

Slip distance for AP/CP 50
Data L1 cache configuration 128 sets, 32 block, 4 -way set associative ,

LRU
Data L1 cache latency 1

Unified L2 cache
configuration

1024 sets, 64 block, 4 - way set associative,
LRU

Unified L2 cache latency 6
Integer functional unit ALU(x 4), MUL/DIV

Floating point functional
unit

ALU(x 4), MUL/DIV

Number of memory port 2

3.2 Benchmarks Results

Figure 9 and Figure 10 show the simulation results of the DIS Benchmark Suite and the

Stressmark Suite. The performance results of the HiDISC architecture are compared to a

4-way superscalar architecture. The far left bar indicates the performance results of the

superscalar architectures. The second bar expresses the performance results of the basic

HiDISC architecture. The remaining two bars show the possible performance results

when enhancing the prefetching capability of the CMP processor. The numbers in

parenthesis express the cache miss reduction ratio. The enhancements will be explained

in more detail in the next section.

15

� 	
 � � 	
 � � � � � � �� 	
 � � 	
 � � � � � � �� 	
 � � 	
 � � � � � � �� 	
 � � 	
 � � � � � � �

�� � �
� � �� � �
� � ���
� �� � ��
� �

� ��� ��� ��� � � � � � � �� � ! " # $ % & ' ' � ! ($) " *

+,-

. / 0 $ 1 ' " ! 2 ! 1 3 & 4 5 . 3 & 4 5 . 6 � 7 8 9 3 & 4 5 . 6 : ; � 7 � 8 9

< = > < ? @

AA B C
A B DA B E
A B FGG
B CG B DG
B E

C A�D A�E A�F A G A A G C AH C I J K L M = N O O H J P M Q K R

STU

@ V W M X O K J Y J X Z N < ? @ I Z N < ? @ I [\ \ B C] ^ _ Z N < ? @ I [F D B ` G ^ _

a a b c d e f

gg h i
g h jg h k
g h lmm
h im h jm
h km h l
i

i g�j g�k g�l g m g g m i gn i o p q r s t u v v n p w s x q y

z{|

f } ~ s � v q p � p � � u d e f o � u d e f o � � h i � � � � u d e f o � m k h j i � �

� � � � � � �

� � � �� � �
� � � ���
� � �� � ��
� � �

� ��� ��� ��� ��� � ��� � �� � � � � � � � ¡ ¡ � � ¢ � £ � ¤

¥¦§

� ¨ © � ª ¡ � � « � ª ¬ � � � � ¬ � � � �®­ � � � ¯ ° ¬ � � � �®­ � � � ± ¯ °

Figure 9: DIS benchmark per formance results

All four DIS benchmarks show better performance than the baseline superscalar

architecture. However, with the Stressmark, only two of the six cases show better

performance for the HiDISC. The remaining four benchmarks do not show any

performance advantage for the HiDISC architecture.

16

² ³ ´ µ ¶ · ¸ · ¹ º » ¼ ½ ¶ ¾ ³ º ¿ À ¸ ³ º ¶ ¶

Á
Á Â Ã
Á Â Ä
Á Â Å
Á Â ÆÇ
Ç
Â Ã

Ã ÁÈÄ ÁÉÅ ÁÈÆ Á
Ç
Á Á
Ç
Ã ÁÊ Ã » ´ Ë Ì º Í · ¶ ¶ Ê ´ ¸ º µ Ë Î

ÏÐÑ

À ¾ Ò º ³ ¶ Ë ´ ¼ ´ ³ Ó · Ô Õ À » Ó · Ô Õ À » Ö
Ç ×
Â Ø Á Ù Ú Ó · Ô Õ À » Ö Û Û Â Û

×
Ù Ú

Ü Ý Þ ß à á â ã ä à â á å åÜ Ý Þ ß à á â ã ä à â á å åÜ Ý Þ ß à á â ã ä à â á å åÜ Ý Þ ß à á â ã ä à â á å å

æ ç è é
æ ç ê
æ ç ê é
æ ç ë
æ ç ë é
æ ç é

è ìíë ìíî ìíï ì�æ ì ìðæ è ìñ è ò ó ô õ ö ÷ ø ù ù ñ ó ú ö û ô ü

ýþÿ

� � � ö � ù ô ó � ó � � ø � � � ò � ø � � � ò � æ ç 	 é
 � � ø � � � ò � 	 ë ç ì ï
 �

�
 � � � � � � � � � � �

�� � �
� � �� � �
� � ��
� � �� � �
� � �

� ��� ��� ��� ��� � ��� � �
 � !
 " # � � � � �
 � � $ " %

&'(

�) * � � � "
 +
 � , � - . � ! , � - . � !0/ 1 2 � 2 3 4 , � - . � !0/ 5 2 � 6 3 4

7 8 9 : ; < = > ; ? < @ @

A B C
A B C D
A B D
A B D D
A B E
A B E D
A B F

G HIC HJE HIK HLA H HMA G H
N G O : P Q < R S @ @ N : ; < T P U

VWX

> Y 8 < ? @ P : Z : ? [S \] > O [S \] > O0^ C _ B K ` a [S \] > O0^ F C B K ` a

b < S c Q d e ? Q e e 9 = > ; ? < @ @b < S c Q d e ? Q e e 9 = > ; ? < @ @b < S c Q d e ? Q e e 9 = > ; ? < @ @b < S c Q d e ? Q e e 9 = > ; ? < @ @

H
H B D
A
A B D
G

G H�C H�E H�K H�A H H�A G H
N G O : P Q < R S @ @ N : ; < T P U

VWX

> Y 8 < ? @ P : Z : ? [S \] > O [S \] > Of^ D H ` a [S \] > O0^ F D ` a

g S < Z 9 = > ; ? < @ @

A B D
A B D D
A B E
A B E D
A B F
A B F D
A B K

G HIC HJE HIK HLA H HMA G H
N G O : P Q < R S @ @ N : ; < T P U

VWX

> Y 8 < ? @ P : Z : ? [S \] > O [S \] > Of^ h B h ` a [S \] > O0^ _ _ B E ` a

Figure 10: Stressmark per formance results

3.3 Discussion

The simulation results show that the HiDISC system performs quite well in general with

the DIS benchmarks. This is because the DIS benchmarks contain many long latency

floating-point operations which can effectively hide any long memory latency. In other

words, the amount of computation code and that of memory access code are well

balanced in the DIS benchmark Suite. Conversely, the size of the Stressmark

computation code is much smaller than that of the memory access code. It is one of the

17

main reasons for the somewhat weaker performance results observed in the case of the

Stressmark Suite.

Four DIS Benchmarks Results (Figure 9)

Four DIS benchmarks outperform the baseline superscalar architecture particularly with

higher memory latencies. More particularly, the Method of Moments is quite robust

when faced with longer memory latencies. It contains enough computation code which

can hide the longer access latency. Also, the dependencies between the Computation

Stream and the Access Stream are comparatively not heavy and provide enough slip

distance to hide any long memory latency.

In the case of the Multidimensional Fast Fourier Transform, HiDISC also

outperforms the superscalar architecture. However, the results show a weaker

performance for long memory latencies even with the HiDISC model. Indeed, the

synchronization between the AS and the CS limits the possible slip distance between the

two streams. It is due to the data dependencies between the two streams: frequent data

dependencies between the Access Stream and the Computation Stream cause loss of

decoupling events. Usually, it is the CS which has to wait for a data element to be

produced by the AS (although the converse is also sometimes true). When this happens,

the slip distance between the two processors is reduced significantly, one processor must

wait for the other and any advantage is negated since there is no more parallelism

between the two processors.

The Data Management and the Ray-Tracing benchmarks are not affected by

longer memory latencies in either case. It should be noted that the working set for the

Data Management benchmark fits quite well in the cache. As should be expected, a

program with a small working set is not a good candidate for a prefetching architecture

such as the HiDISC. Conversely, due to the prefetching of the CMP, FFT exhibits better

performance.

18

Six Stressmarks Results (Figure 10)

Generally, the Stressmark codes are too small and contain too many operations which are

concerned only with data access. Therefore, the amount of computation code to hide data

access is not sufficient. The HiDISC produces weaker results in four Stressmarks –

Update, Field, Matrix and Neighborhood - out of the six Stressmarks. However, the

remaining two Stressmarks - the Pointer and the Transitive Closure – advantageously

exploit the characteristics of our architecture.

Besides the unbalanced computation and access code ratio, frequent loss of

decoupling is another main reason for the weak performance we observe in several

Stressmarks. Indeed, four Stressmarks except Pointer and Transitive Closure contain too

much data dependencies and frequent synchronizations between two streams.

However, in the Pointer Stressmark case, pointer chasing can be executed far

ahead since it does not require the computation results from the CP. The Transitive

Closure benchmark also produces good results because not much in the AP depends on

the results of the CP. In both cases, the Access Stream can run far ahead of the

Computation Stream: a sufficient slip distance is guaranteed in both benchmarks.

The slip distance is truly inherent to the instruction mix pattern of the application:

if the Access Stream does not depend much on results from the Computation Stream, the

Access Stream can run earlier and maintain a high slip distance. Pointer and Transitive

Closure exhibit good performance for the same reasons. In addition to the possible slip-

distance between the two streams, the Stressmark results suggest that applications which

are ideal for the HiDISC would be well balanced in terms of the ratio of computation

operations over memory operations.

Finally, the working set for the Stressmark is quite small and the baseline

superscalar architecture does not suffer from many cache misses. Three Stressmarks

(Update, Field and Neighborhood) cannot improve even with the prefeching of the CMP.

Although some of the benchmarks show weak performance, the fact that the

Pointer Stressmark and the Transitive Closure Stressmark perform better that the baseline

19

superscalar architecture is quite encouraging and suggests the type of the candidate

applications for the HiDISC architecture.

4. Conclusions

Current high-level programming languages and all supporting compilers are based on an

underlying sequential programming behavior. This is confirmed at the lower level where

the instruction set of modern microprocessors are based on a sequential model. However,

in order to exploit some parallelism at the instruction level, manufacturers of current

prevailing high performance processors have considerable changed the processor internal

structure. Also, several features of dataflow models have found their way in modern

processor architectures and compiler technologies such as register renaming and dynamic

scheduling [17]. Decoupled architecture is one such technique which promises to bring

improvement to the performance.

The effectiveness of the HiDISC decoupled architecture has been demonstrated

here with data intensive applications. It has been eloquently shown that the proposed

prefetching method provides better ILP compared to conventional superscalar

architectures. However, the possible loss of decoupling, which is inherited from the

sequential behavior of the programs, stalls the processors and drops utilization in some

cases. The results also point to some future modifications of the current CMP for

effective prefetching.

Clearly, the HiDISC architecture, as designed, will shine when executing data

intensive applications because they contain enough computation to hide long memory

latencies. In addition to that, the slip distance is another important factor which

determines overall performance. Too many data dependencies of the access processor on

the computation processor prevent a sufficient slip distance from developing. Therefore,

stream-like applications are favored for the HiDISC system.

20

5. Recommendations

Based upon these performance results, we propose some improvements to the basic

HiDISC architectures in order to make it fit a wider variety of applications.

5.1 Future Enhancements to the HiDISC

Although the independent management of the memory hierarchy provides an opportunity

to implement novel prefetching techniques, the HiDISC architecture suffers from two

significant weaknesses. First, the frequent synchronizations between the AP and the CP

cause stalling of the processors and result in low utilization. Second, the CMP code is

essentially not different from the AP code. Therefore, all the load instructions are forced

to run on the CMP as prefetching. However, not every prefetching by the CMP is

necessary and helpful. Necessary enhancements regarding the above two problems will

follow.

The frequent synchronizations cause loss of decupling and prevent timely

prefetching. Therefore, each processor of the HiDISC loses many CPU cycles to wait

until the necessary data arrives. To solve this problem, Simultaneous MultiThreading

(SMT) should be added to the HiDISC architecture. SMT will raise the utilization by

running multiple threads simultaneously. In other words, in a multithreaded HiDISC

system, SMT would raise the utilization of the processors, while decoupling would

reduce the memory latency [22][23].

The second modification is related to the current CMP design. The main

motivation for the existence of the CMP processor is to reduce the cache miss rate by the

Access Processor by timely prefetching. Therefore, the CMP should run ahead of the AP,

just like the AP runs ahead of the CP. However, in the basic HiDISC design, the

instruction stream for the CMP is quite similar to the Access Stream, which is a

significant limitation as far as the effectiveness of the prefetching is concerned. Our

original design executes every load instruction on CMP. However, if the cache line

already resides in cache, those prefetches become redundant operations.

21

Only future probable miss instructions can benefit from the prefetches by the

CMP. However, the current CMP is too heavy and involves performing too many

redundant operations. Hence, in order to prefetch more efficiently into the cache, we

must develop better methods so that we execute only probable miss instructions.

We define Cache Miss Access Slice (CMAS), which is a part of the Access

Stream, consisting of the probable cache miss instruction and its parent instructions. The

probable cache miss instructions can be found using the cache access profile [27][28].

The CMAS is executed on existing CMP in a multithreaded manner. Indeed, the CMP is

an auxiliary processor for speculative execution of probable cache miss instructions.

5.2 Flexi-DISC

One of the most striking characteristics of the HiDISC architecture is its inherent

flexibility and how it yields highly efficient execution of a large variety of loop-based

programs with little or no temporal locality. This fundamental feature is further extended

in the proposed Flexi-DISC. This new architecture will be targeted to a wide variety of

more complex, numerical and non-numerical applications (such as Automatic Target

Recognition).

While the original HiDISC is centered around three processors with well defined

roles, the Flexi-DISC maintains the three roles of the CP, the AP, and the CMP at the

kernel of its fundamental machine model but elevates it to a more sophisticated concept:

the two highest levels (Access and Cache Management) are still handling the transfer of

data between the memory system and the Computation level while the third level remains

in charge of the computation per se. This can be represented as the three concentric rings

on Figure 11: the Computation Kernel (CK), the Low-level Cache Access Ring (LCAR),

and the Memory Interface Ring (MIR).

22

Memory Inter face Ring

Low Level Cache
Access Ring

Computation
Kernel

Figure 11: The three-Ring Flexi-DISC Architecture

The fundamental observation which leads to this partitioning comes from the fact

that the types of applications (Memory Intensive) we have been targeting are both varied

in nature and also inherently highly dynamic at execution time. This may mean that

memory access patterns could range from, say, single use of any data element (no

temporal locality), to multiple reuses (high temporal locality). Consequently, the

bandwidth and types of pipes to and from the memory system must adapt to the changes,

whether they be static or dynamic. We plan on centering the whole architecture around a

highly reconfigurable Computation Kernel.

The central Computation Kernel is based on an array of simple processors which

can be dynamically rearranged to meet the demands of the current application. It can

even be partitioned into sub-arrays which are allocated to different portions of the

application (or even to different applications as needed). Such a powerful computation

kernel requires an equally powerful “pipeline” to feed it information to and from the

memory system. Further, the variety of target applications makes the memory accesses

unpredictable. This means that depending on the application (or even the phase of a

given computation), the amount of memory traffic may fluctuate, and the prefetching

mechanisms must be allowed to adapt to the situation at hand. This also means that

23

instead of allowing a single processor for the Cache Access role and another for the

Cache Management role, a pool of identical processing units must be made available to

the two roles combined. This sharing enables a highly efficient dynamic partitioning of

the resources and their run-time allocation to the two outer rings (the Low-level Cache

Access Ring, and the Memory Interface Ring).

The technology developed for the HiDISC compiler can be expanded to include

the rearrange ability of the machine, as well as the partitioning it will undergo in the

presence of multi-headed applications.

Memory Interface Ring

Low Level Cache
Access Ring

Computation
Kernel

Appl ication 1

Appl ication 2

Application 3

Figure 12: Multiple application shar ing of the Flexi-DISC model

24

References

[1] Murali Annavaram, Jignesh M. Patel, Edward S. Davidson, Data Prefetching by

Dependence Graph Precoumputation, 28th International Symposium on Computer

Architecture, June, 2001

[2] J.Arul, Execution Performance of the Scheduled Dataflow Architecture(SDF),

International Conference on Parallel Architecture and Compilation Techniques:

MEDEA Workshop Oct 13-15th 2000.

[3] A. Bakshi, Jean-Luc Gaudiot, Wen-Yen Lin, M. Makhija, V. K. Prasanna, Wonwoo

Ro, Chulho Shin , Memory Latency: to Tolerate or to Reduce?, The 12th

Symposium on Computer Architecture and High Performance Computing, SBAC-

PAD 2000 Oct 24-27, 2000

[4] P. Bird, A. Rawsthorne, and N. Topham. The effectiveness of decoupling. In Int.

Conf. on Supercomputing, pages 47--56, 1993

[5] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0. Technical

report, University of Wisconsin-Madison, Computer Science Department, 1997

[6] T.-F. Chen and J.-L. Baer. Effective Hardware-Based Data Prefetching for High-

Performance Processors. Transactions on Computers, 44(5):609--623, May 1995

[7] Stephen P. Crago, HiDISC: a high-performance hierarchical, decoupled computer

architecture, , Ph.D. Dissertation, University of Southern California, 1997

[8] Stephen P. Crago, Alvin Despain, Jean-Luc Gaudiot, Manil Makhija, Wonwoo Ro,

and Apoorv Srivastava, A High-Performance, Hierarchical Decoupled Architecture,

In Proceedings of MEDEA Workshop, Philadelphia, October 15, 2000

[9] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher Hughes, Yong-

Fong Lee, Dan Lavery, John P. Shen, Speculative Precomputation: Long-range

Prefetching of Delinquent Loads, 28th International Symposium on Computer

Architecture, June, 2001

[10] Haitao Du, Analysis of Memory Access Behavior of DIS Stressmark Suite and

Optimization, Tech . Report, Center for Embedded Computer Systems, University

of California, Irvine

25

[11] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm and D. Tullsen, Simultaneous

Multithreading: A Platform for Next-generation Processors, In IEEE Micro, 0. 12-

19, Oct. 1997

[12] M. Farrens, P. Nico and P. Ng, A Comparison of Superscalar and Decoupled

Access/Execute Architectures, In Proceedings of the 26th Annual International

Symposium on Microarchitecture, Dec. 1993

[13] J. R. Goodman, J. T. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter, and H. C.

Young, PIPE: A VLSI Decoupled Architecture, In Proc. 12th International

Symposium on Computer Architecture, pp. 20-27, June 1985

[14] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann, 1992

[15] S.I. Hong, S.A. McKee, M.H. Salinas, R.H. Klenke, J.H. Aylor and W.A. Wulf,

Access Order and Effective Bandwidth for Streams on a Direct Rambus Memory,

5th International Symposium on High-performance Computer Architecture, 1999.

[16] G. P. Jones and N. P. Topham, A Comparison of Data Prefetching on an Access

Decoupled and Superscalar Machine, In Proc. 30th International Symposium on

Microarchitecture, Dec. 1997

[17] K.M. Kavi, J.Arul and R.Giorgi. Execution and cache performance of the Scheduled

Dataflow Architecture, Journal of Universal Computer Science, Special Issue on

Multithreaded and Chip Multiprocessors, Oct. 2000, pp 948-967, Vol. 6, No. 10.

[18] Ronny Krashinsky and Mike Sung, Decoupled Architectures for Complexity-

Effective General Purpose Processors, Tech. Report, MIT Laboratory for Computer

Science, Dec. 2000

[19] Lizy Kurian, Paul T. Hulina and Lee D. Coraor, Memory Latency Effects in

Decoupled Architectures, IEEE Transactions on Computers, vol. 43, no. 10, Oct.

1994

[20] C.-K. Luk and T. C. Mowry. Compiler based prefetching for recursive data

structures. In 7th International Conference on Architectural Support for

Programming Languages and Operating Systems, October 1996

26

[21] Chi-Keung Luk, Tolerating Memory Latency through Software-Controlled Pre-

Execution in Simultaneous Multithreading Processor, In Proc. of International

Symposium on Computer Architecture, 2001

[22] Joan-Manuel Parcerisa and Antonio González, The Synergy of Multithreading and

Access/Execute Decoupling, In Proc. 5th. Int. Symp. on High-Performance

Computer Architecture (HPCA-5), Jan. 1998

[23] Joan-Manuel Parcerisa and Antonio González, Improving Latency Tolerance of

Multithreading through Decoupling, IEEE Transactions on Computers, October,

2001

[24] D. Patterson, et al. A Case for Intelligent DRAM: IRAM, IEEE Micro, April 1997

[25] Kevin Rich, Decoupled Architectures: A Thorough Analysis, Computer Science

Department: Qualifying Examination Paper, University of California at Davis,

Davis, California (May 1995)

[26] Amir Roth, Andreas Moshovos and Guri S. Sohi, Dependence Based Prefetching

for Linked Data Structures. In proc. ASPLOS-8, October 4-7, 1998.

[27] Amir Roth and Gurindar S. Sohi, Speculative Data-Driven Multithreading, In proc.

of HPCA-7, Jan. 2001

[28] Amir Roth, Craig B. Zilles and Gurindar S. Sohi, Speculative Miss/Execute

Decoupling. In proc. of MEDEA Workshop, Oct. 19, 2000

[29] Jurij Silc, Borut Robic and Theo Ungerer, Processor Architecture, Springer, 1999

[30] J. Smith. Decoupled Access/Execute Computer Architecture. In Proc. 9th

International Symposium on Computer Architecture, Jul. 1982

[31] Srikanth T. Srinivasan and Alvin R. Lebeck, Load latency tolerance in dynamically

scheduled processors, In Proceedings of the 31st annual ACM/IEEE international

symposium on Microarchitecture, 1998.

[32] D. M. Tullsen, S. J. Eggers, and H.M. Levy, Simultaneous Multithreading:

Maximizing On-Chip Parallelism. In Proc. 22nd International Symposium on

Computer Architecture , June 1995.

27

[33] G. Tyson, M. Farrens and A. Pleszkun, MISC: A Multiple Instruction Stream

Computer, Proceedings of the 25th Annual International Symposium on

Microarchitecture, Dec. 1992

[34] Wm. A. Wulf, Evaluation of the WM Architecture, In Proc. 19th International

Symposium on Computer Architecture, Gold Coast, Australia, May 1992

[35] Yinong Zhang, G. B. Adams III, Performance Modeling and Code Partitioning for

the DS Architecture, In Proc. 25th Annual International Symposium on Computer

Architecture, 1998

[36] Yinong Zhang, G. B. Adams III, Exploiting Instruction Level Parallelism with the

DS Architecture. In Proc. of the 1996 Int’ l Conf. on Parallel Processing, Aug. 1996

[37] Craig B. Zilles and Gurindar S. Sohi, Understanding the Backward Slices of

Performance Degrading Instructions. ISCA-2000, June 2000.

[38] DIS Stressmark Suite,

 http://www.aaec.com/projectweb/dis/DIS_Stressmarks_v1_0.pdf

[39] Data-Intensive Systems Benchmarks Suite Analysis and Specification ,
http://www.aaec.com/projectweb/dis/

28

Appendix A: Compiler and Simulator Descr iption

The compiler and the simulator are based on the SimpleScalar 3.0 tool set. The two tools

have been designed by modifying sim-outorder.c. The first tool is sim-pfg.c, which takes

care of the whole compiling procedure and the other one is sim-dumas.c, which exactly

matches the HiDISC simulator. This appendix gives a detailed description of the tools.

A.1. Compiler Tool: sim-pfg.c

sim-pfg.c is the source code (C) for the HiDISC compiler. The main tasks of sim-pfg.c

are: 1. Deriving the Program Flow Graph and 2. Separating the streams. The input for

sim-pfg.c is a binary executable for SimpleScalar while the output is a binary executable

for the HiDISC architecture with the separation information.

gcc

PFG
generator

Stream
separator

Sequential executable

Benchmarks

HiDISC executable

Dependency information

Figure 13: The HiDISC Compiler

Figure 13 shows the procedure inside the HiDISC compiler. The two boxes

perform the operations mentioned earlier.

Der iving Program Flow Graph (PFG)

The Program Flow Graph delivers the data dependency information between instructions.

The dataflow relationship between instructions must first be defined in order to get the

29

backward slice of a certain target instruction. After this procedure, each access related

instruction can point to the parent instructions based on the source register name. The

main procedure is named pfg_const(). Its detailed mechanism is described in Figure 14.

add R7, R8, R5

Register Table

PFG_station Table

i
 Find out the PFG_station for

the parent instruction

j
 Source Registers

R5

Instruction

R8

R4

R9

k
 Points to parent

Figure 14: Der iving PFG Graph

The data structure for each instruction has been defined as pfg_station. After the

instruction is decoded, a dedicated pfg_station is assigned. The first procedure consists

in accessing the register table based on the source register name. (referred to as
�

 in

Figure 14). The register table gives the pointer to the instruction (actually, the pointer to

pfg_station of the instruction, referred to as � l m Figure 14) which last updated the

source register. Finally, the decoded instruction can have the pointer for the parent

instructions referred to as � in Figure 14.

This is how we uncover the parent instructions of a load/store instruction. Later,

we can proceed with a backward chasing procedure in order to extract the backward slice

based on the PFG information.

30

Separating Stream

The stream separation is based on the register dependencies. First, when the decoded

instruction is either a load or a store instruction, it is immediately assigned to the Access

Stream. After that, the backward chasing procedure is initialized (procedure named

chasing_parents() is called). Essentially, it is function call which is recursively applied

until it reaches an instruction which has been pre-determined to belong to the Access

Stream.

The PFG information from the previous step yields the pointers to the parent

instructions. Therefore, the chasing_parents() procedure basically returns all the

pointers to the parent instructions.

After the instruction is detected as belonging to the Access Stream, the stream

separation information is updated inside the binary file. Since each instruction of the

SimpleScalar binary includes an additional annotation field, those extra bits can be used

to carry the separation information.

A.2. Simulator : sim-dumas.c

The HiDISC simulator has been designed by modifying the sim-outorder.c module of the

SimpleScalar 3.0 tool set [5]. The major modifications consist in: 1. implementing the

three processors of the HiDISC and 2. implementing the communication mechanisms

(queues) between those three processors. As in the original SimpleScalar simulator, the

HiDISC simulator is also an execution-driven, cycle- time simulator.

To implement the three processors of the HiDISC, we basically copied three times

the pipelined RISC processor of the SimpleScalar tool set and tailored each so they would

correspond to the architecture of each HiDISC processor.

After the decoding stage, each processor has a corresponding ready list, which is

the instruction stream for each processor. We implement three different functional units

which are unique to each processor. Procedure ruu_issue() of the sim-outorder.c has

been copied and changed to ruu_issup_cp(), ruu_issue_ap(), and ruu_issue_cmp().

31

Each function detects each ready list and finds the available functional unit that is

assigned to the corresponding processor.

The need for communication can also be detected at the decoding stage. If an

instruction requires data from the other processor, it should be blocked and it should wait

until the other processor sends the data. The queue implementation is quite easily

handled using the existing link operations of the SimpleScalar tool set. All the necessary

source data is linked after the ruu_dispatch() procedure. Therefore, the sending

processor can “wake up” the waiting processor just like ruu station in sim-outorder.c.

Communications between the AP and the CMP are achieved through the data

cache. Therefore, the data cache is designed and implemented to be shared and accessed

by both processors.

32

Appendix B: Raw Per formance Data

This appendix contains all the simulation results. The column denoted as mem

corresponds to the various memory latencies. The column marked SS contains the

performance of the base line superscalar architectures. The fourth column denoted as

HiDISC contains the performance results of the HiDISC architecture without the CMP

processor. The remaining two contain the performance results with the CMP enhanced

pre-fetching algorithms. The performance measures are all in IPC (instructions per

clock).

33

< DIS benchmarks >

non0p qsrfq tut vxw y{z tu|~}fq���� }oq��f�
�o� ��� � ��� �f� ��� �f� ��� �f�
� � ��� �o� ��� ��� ��� ��� ��� �o�
�o� ��� �f� ��� �o� ��� �0� ��� �f�
�f� ��� ��� ��� � � ��� � � ��� ���
�0�f� ��� �f� ��� �f� ��� ��� ��� �o�
�0�f� ��� �f� ��� � � ��� ��� ��� �o�

���u� qsroq t�t vxw y{z tu|~}oq���� |�q��o�

�o� ��� �o� ��� �o� ��� �o� ��� �o�
� � ��� �o� ��� �o� ��� �o� ��� �o�
�o� ��� �o� ��� �o� ��� �o� ��� �o�
�f� ��� ��� ��� �o� ��� �o� ��� �o�
�0�o� ��� ��� ��� �o� ��� �o� ��� �o�
�0�o� ��� ��� ��� �o� ��� �o� ��� �o�

y{� qsroq tut vxw y�z t�|�}oq���� }fq��o�

�o� ��� � ��� � � ��� � � ��� � �
� � ��� �o� ��� � � ��� � � ��� � �
�o� ��� ��� ��� � � ��� � � ��� � �
�f� ��� ��� ��� � � ��� � � ��� � �
�0�o� ��� �o� ��� �o� ��� � ��� � �
�0�o� ��� �o� ��� ��� ��� ��� ��� �

���0� p�� �o}ow �0� qsrfq tut vxw y�z t�|�}fq���� }oq��f�

�o� ��� �o�o��� ��� � �f�o� ��� � �o�o� ��� � �f�o�
� � ��� �o�f�o� ��� � �f� ��� � �o� ��� � �f�
�o� ��� �o�o��� ��� � �f��� ��� � �o��� ��� � �f���
�f� ��� �o�f�o� ��� � �f� � ��� � �o��� ��� � �f���
�0�o� ��� �o�f�o� ��� � �f� ��� � �o�o� ��� � �f�o�
�0�o� ��� �o�f��� ��� � �f��� ��� � �o� ��� � �f�

34

< Stressmark >

p�� ���0��w � w ��r
|�� �o�0 0� r qsroq tut vxw y{z tu|¡|�q���� }fq��o�

�o� ��� �o� ��� � � ��� ��� ��� ���
� � ��� �o� ��� ��� ��� ��� ��� ���
�o� ��� � � ��� �o� ��� ��� ��� �
�f� ��� �o� ��� �f� ��� ��� ��� �f�
�0�o� ��� �o� ��� �f� ��� ��� ��� �f�
�0�o� ��� ��� ��� �f� ��� ��� ��� �f�

¢o��w ��� rf�£qsroq t�t vxw y�z t�|¤}fq����¥}oq��f�

�o� ��� �o� ��� � � ��� � � ��� � �
� � ��� �o� ��� � � ��� � � ��� � �
�o� ��� �o� ��� � � ��� � � ��� � �
�f� ��� �o� ��� � � ��� � � ��� � �
�0�o� ��� �o� ��� � � ��� � � ��� � �
�0�o� ��� �o� ��� � � ��� � � ��� � �

¦urfw ��§f¨o��� ©
§0�o��ª qsrfq t�t vxw y�z t�|«}oq���� }fq��o�

�o� ��� � ��� �o� ��� �o� ��� �o�
� � ��� � ��� �o� ��� �o� ��� �o�
�o� ��� � ��� �o� ��� �o� ��� �o�
�f� ��� � ��� �o� ��� �o� ��� �o�
�0�o� ��� � ��� �o� ��� �o� ��� �o�
�0�o� ��� � ��� �o� ��� �o� ��� �o�

¬x�oªo�f� r­qsroq t�t vxw y�z t�|«}oq���� }fq��o�

�o� ��� ���f� ��� �f�f��� ��� �f�f��� ��� �f�o���
� � ��� ���o�f� ��� �f�f��� ��� �f�f�o� ��� �f�o�o�
�o� ��� ���o�f� ��� �f�f��� ��� �f�f� ��� �f�o���
�f� ��� ���o�f� ��� �f�f��� ��� �f���f� ��� �f���f�
�0�o� ��� ���o�o� ��� �f�f� � ��� �f���0� ��� �f���0�
�0�o� ��� ���o�o� ��� �f�f� � ��� �f��� � ��� �f��� �

35

���f� � w ® qsroq t�t vxw y{z tu|�}oq���� }fq��o�
�o� ��� ���0��� ��� ���0��� ��� �o� ��� �o�
� � ��� ���f��� ��� �o�f�o� ��� �f� �o� ��� �o� � �
�o� ��� �o�o� � ��� �f��� ��� ���f�f� ��� � � �
�f� ��� �o�f� ��� �o���f� ��� �o�0��� ��� �f� � �
�0�f� ��� �o��� ��� ���o�f� ��� �f� � � ��� ���0�o�
�0�f� ��� � � � � ��� �o� � � ��� � � ��� ��� �f�o�o�

nfw rf� ª qsroq t�t vxw y{z tu|�}oq���� }fq��o�

�o� ��� �o� ��� � ��� � ��� �
� � ��� �o� ��� � ��� � ��� �
�o� ��� �o� ��� � ��� � ��� �
�f� ��� �o� ��� � ��� � ��� �
�0�f� ��� �o� ��� � ��� � ��� �
�0�f� ��� �o� ��� � ��� � ��� �

