H OSC ADecoupged Achteduefa
Appicaionsin Daalrntensve

Co mputi ng

Alvin M. Despain, Jean-Luc Gaudiot,
Manil Makhija and Wonwoo Ro

University of Southern California
http.//www-pdpc.usc.edu
19 May 2000

HiDISC: Hierarchical Decoupled Instruction Set Computer USC

UNIVERSITY
OF SOUTHERN

Application I

(FU RSAR M DEO ATR/SL.D S ertific)

Decouping Gonpil &

Stuationd Avereness

CALIFORNIA

New ldeas

* A dedicated processor for each level of the
memory hierarchy

* Explicitly manage each level of the memory hierarchy
using instructions generated by the compiler

» Hide memory latency by converting data
access predictability to data access locality

* Exploit instruction-level parallelism without
extensive scheduling hardware

« Zero overhead prefetches for maximal
computation throughput

Impact

* 2x speedup for scientific benchmarks with large data
sets over an in-order superscalar processor

* 7.4x speedup for matrix multiply over an in-order
issue superscalar processor

* 2.6x speedup for matrix decomposition/substitution over
an in-order issue superscalar processor

* Reduced memory latency for systems that have
high memory bandwidths (e.g. PIMs, RAMBUS)

* Allows the compiler to solve indexing functions for
irregular applications

* Reduced system cost for high-throughput scientific codes

Schedule
« Défi ned benchnar ks] * Qortinues mi a&ions] ° Devdopandtes a —
e MOnpleeds miaa d nore benchnarks ful decouping conple
* Rrfa nedingrudionl eve (SAR * Generae perfa nance
9 mud &i ons on hand-conpil ed «Define HO SC ddidics and evd ude
benchnar ks achitedue des gn
VW -Update S miaor \ 4
April 98 April 9 April 00 May 01
Sat End

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

HiDISC: Hierarchical Decoupled Instruction Set Computer USC

UNIVERSITY

OF SOUTHERN

CALIFORNIA

Apqli cati on I

(FURSARM I]EOATR/S.DS]E‘t ific)

Decourilng Gonpil &

H O SC R ocessar

Me nory

Technological Trend: Memory latency is getting longer relative to
microprocessor speed (40% per year)

Problem: Some SPEC benchmarks spend more than half of their time stalling
[Lebeck and Wood 1994]

Domain: benchmarks with large data sets: symbolic, signal processing and
scientific programs

Present Solutions: Multithreading (Homogenous), Larger Caches,
Prefetching, Software Multithreading

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Present Solutions USC

OF SOUTHERN

CALIFORNIA

Solution Limitations

Larger Caches — Slow

— Works well only if working set fits cache and
there is temporal locality.

Hardware Prefetching — Cannot be tailored for each application

— Behavior based on past and present execution-
time behavior

Software Prefetching — Ensure overheads of prefetching do not outweigh
the benefits > conservative prefetching

— Adaptive software prefetching is required to
change prefetch distance during run-time

— Hard to insert prefetches for irregular access
patterns

— Solves the throughput problem, not the memory
Multithreading latency problem

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

The HiDISC Approach USC

OF SOUTHERN

CALIFORNIA

Qbser vai orn
« St wvare prfech ngi npacts conput e pafa nance

* B M and RAMBUS dfea ah grbandw d h nenory sysem
- wisefU fa specd aive pdeching

Appr oach

» Add a processar to manage prefetch ng
->h de over head

e Onple exdidtly nanagesthenenory h eachy

 Refech ddance adapgstothe programrurti ne behav ar

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

What's HiDISC UsSC

OF SOUTHERN

Computation
Instructions

Access

_ Instructions Access R ocessar
R ogam Conpil e (AP

Cache Mgmt.
Instructions

2nd- Levd Gache
and M n Menory

CALIFORNIA

A dedicated processor for each
level of the memory hierarchy

Explicitly manage each level of
the memory hierarchy using
instructions generated by the
compiler

Hide memory latency by
converting data access
predictability to data access
locality (Just in Time Fetch)

Exploit instruction-level
parallelism without extensive
scheduling hardware

Zero overhead prefetches for
maximal computation throughput

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Decoupled Architectures

USC

UNIVERSITY

OF SOUTHERN

__8-wa

Re

sters

Second-Level Cache
and Main Memory

MIPS

(Gonvertiond)

(Decoud ed)

CALIFORNIA

Slip Control
Queue

(rew

2-way
(Computation
_Processor (CP

I TV

Load Store Address
Queue 5 Queue

=

:
[cache |-

3-Way‘

Cache Management
Processor (CMP

Second-Level Cache
and Main Memory

HIDISC

(Decoud ed)

Store Data
Queue

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Slip Control Queue USC

OF SOUTHERN

CALIFORNIA

« The Slip Control Queue (SCQ) adapts dynamically

if (prefetch_buffer_full ()
Don’t change size of SCQ;

else if (2*late_prefetches) > useful prefetches)
Increase size of SCQ;

else
Decrease size of SCQ;

— Late prefetches = prefetched data arrived after load had
been issued

— Useful prefetches = prefetched data arrived before load
had been issued

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Decoupling Programs for HIDISC-3 USC

(Discrete Convolution - Inner Loop)

OF SOUTHERN

CALIFORNIA

while (not end of loop)

y=y+(x>h)
send y to SDQ

Computation Processor Code

for j=0;j<1, +4)) {
load (x[]]);
load (h[i--1]);

for (= 0;) < ++) GET SCO:

yll=yl+x0I*h(i-1]);

}

Inner Loop Convolution send (EOD token)
send address of y[i] to SAQ

Access Processor Code

for j=0;j<i +4)) {
prefetch (x[j]);

prefetch (h[i--1];
PUT_SCQ;

Cache Management Code

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Benchmarks

USC

UNIVERSITY
OF SOUTHERN

Benchmark Source of Lines of Description Data
Benchmark Source Set Size
Code
LLL1 Livermore Loops 20 1024-element 24 KB
[45] arrays, 100

iterations

LLL2 Livermore Loops 24 1024-element 16 KB
arrays, 100
iterations

LLL3 Livermore Loops 18 1024-element 16 KB
arrays, 100
iterations

LLL4 Livermore Loops 25 1024-element 16 KB
arrays, 100
iterations

LLLS Livermore Loops 17 1024-element 24 KB
arrays, 100
iterations

Tomcatv SPECfp95 [68] 190 33x33-element <64 KB
matrices, 5
iterations

MXM NAS kernels [5] 113 Unrolled matrix 448 KB
multiply, 2 iterations

CHOLSKY NAS kernels 156 Cholesky matrix 724 KB
decomposition

VPENTA NAS kernels 199 Invert three 128 KB
pentadiagonals
simultaneously

Qsort Quicksort sorting 58 Quicksort 128 KB

algorithm [14]

CALIFORNIA

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Simulation Parameters

USC

UNIVERSITY

OF SOUTHERN

CALIFORNIA

Parameter Value Parameter Value
FLC Size 4 KB SLC Size 16 KB
FLC Associativity 2 SLC Associativity 2

FLC Block Size 32B SLC Block Size 32B
Memory Latency varied Memory Contention Time varied
Victim Cache Size 32 Entries Prefetch Buffer Size 8 entries
Load Queue Size 128 Store Address Queue Size 128
Store Data Queue Size 128 Total issue width 8

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Simulation Results

USC

UNIVERSITY
OF SOUTHERN

LLL3
E ST MIps ==
DEAP ==
E 41 CAPP™=
g HiDISC #—
2 3t
e
ndi]
g 24]] u J
E 1 Sm— o=
[}
= 0 . . , .
0 40 80 120 160 200

Main Memory Latency

Cholsky
161 MIPS==—
14} DEAP=
I CAPP-=
12

! HIDISC#=

Mormalized Execution Time
oo

0 40 80 120 160 200
Main Memory Latency

Mormalized Execution Time

Mormalized Executon Time

12
10

o N B~ OO 0

CALIFORNIA

MIPS ==
DEAP =
CAPP =
| HIDISC

Tomcatv

0 40 80 120 160 200
Main Memory Latency
Vpenta
| MIPS =¢—
DEAP ==
- CAPPp ~®
[HiDISC =#— B
|
Mmmwwﬂﬁh
0 40 80 120 160 200

Main Memory Latency

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Our Results: Impact USC

OF SOUTHERN

CALIFORNIA
1

2x speedup for scientific benchmarks with large data sets over an in-
order superscalar processor

7.4x speedup for matrix multiply (MXM) over an in-order issue
superscalar processor - (similar operations are used in ATR/SLD)

2.6x speedup for matrix decomposition/substitution (Cholsky) over
an in-order issue superscalar processor

Reduced memory latency for systems that have high memory
bandwidths (e.g. PIMs, RAMBUS)

Allows the compiler to solve indexing functions for irregular
applications

Reduced system cost for high-throughput scientific codes

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Schedule

USC

UNIVERSITY
OF SOUTHERN
CALIFORNIA
 Defined benchmarks » Continue simulations — ¢ Update Simulator ——
» Completed simulator of more benchmarks » Generate performance
» Performed instruction-level (ATR/SLD) statistics and evaluate
simulations on hand- *Define HIDISC design
compiled benchmarks architecture *Develop and test a
full decoupling
Y compiler v
April 98 April 99 April 00 May 01
Start End

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Summary USC

OF SOUTHERN

CALIFORNIA

A processor for each level of the memory hierarchy
Adaptive memory hierarchy management

Reduces memory latency for systems with high memory
bandwidths (PIMs, RAMBUS)

2x speedup for scientific benchmarks
3x speedup for matrix decomposition/substitution (Cholesky)

7x speedup for matrix multiply (MXM) (similar results expected
for ATR/SLD)

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

USC

BEYOND HIDISC o SouTice

CALIFORNIA

» Distributed Processing

¢ Sensors
. Data /0 (disk farms)
. Multiprocessors

» Multiprocessing

¢ Mc Fisc-on-a-chip
¢ SMT/MT/I-structures
¢ VLSI layout/performance tradeoffs

» Applications
. Compute/database search and retrieval

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

The McDISC Invention UsSC

OF SOUTHERN

CALIFORNIA
1

Problem: All extant, large-scale multiprocessors perform poorly
when faced with a tightly-coupled parallel program.

Reason: Extant machines have a long latency when
communication is needed between nodes. This long latency kills
performance when executing tightly-coupled programs. (Note
that multi-threading a la the Tera machine does not help when
there are dependencies.)

The McDISC solution: Provide the network interface processor
(NIP) with a programmable processor to execute not only OS
code (e.g. Stanford Flash), but user code, generated by the
compiler.

Advantage: The NIP, executing user code, fetches data before it
IS needed by the node processors, eliminating the network fetch
latency most of the time.

Result: Fast execution (speedup) of tightly-coupled parallel
programs.

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

The McDISC System: Memory-Centered Distributed Instruction USC

Set Computer ONIVERSITY

OF SOUTHERN

CALIFORNIA

Understanding FLIR SARVIDEO ESS SES

Inference Analysis I}‘
Computation Instructions Computation _ D‘ Register I__inks
Processor (CP)

D" to CP Neighbors

}
™ Regses | L Sensor
]
- Access Instructions Access 3-D Torus
Program —»@ < Processor (AP) > of Pipelined Rings to Displays
] X Y 7 and Network

Cache Management | Cache |
Instructions N) g
Y el / -
Network Gache Management _ Network Interface ~ j

Management \ Processor (CMP) Processor (NIP)
j/
1

Instructions <
> Main Memory
/-
D;sc CAdaptive Signal (Adapiwe Graphics _ : ” |
< Processor (DP)) PIM (ASP) PIM (AGP) &
) » \ Ej

i

-
-

<£j\] — D
A \\

™1

N TN

Disc Cache \ H:j
SAR Video L-J]l Targeting =
@ Ej RAIDEj W Decision Process

A
Dynamic Sensor Situation

Database Inputs Awareness 1
o

Disc Farm

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

USC

Matrix Multiply on McDISC

- S5 —p
- S5 —p

OF SOUTHERN
|
C |
m =

CALIFORNIA
A
|
A i B
| g m =
Parallel Mtrix Miltiply
pid = processor id
p = # of processors
min_i (pid/ p) * n;
max_i mni + (p/ n) - 1;

for (i =mn_i; i <= mx_i; ++i) {
for (j =0, j <m ++) {
c[i][j] = 0;
for (k =0; k <1; ++k) {
, c[i][j] = c[ill[i]l + ali]l[k] * b[KI[j];
}
}

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Matrix Multiply on McDISC USC

UNIVERSITY

OF SOUTHERN

CALIFORNIA

CP

N%ile (not end-of-data) {
while (not end-of-data) {
c = 0
while (not end-of-data) {
/* a and b from queue */
c =c¢c +a* b
}

send ¢ to store queue;

™~

}

N8 J

C\MP

L

e

ro(io=min_i; i <= max_i; ++) {0\
for (j =0; j <m ++j) {
for (k =0; k < 1; ++k) {
prefetch (a[i][k]);
prefetch (b[i][k]);
¥

AP
i <= max_i; ++i) {0\

ffor (i = min_i;
for (j =0; j <m ++4) {
for (k =0; k <1; ++k) {
load a[i][k] to | oad queue;
l oad b[i][k] to | oad queue;

}
send end-of-data to CP;

put &IJ[i][j] in store queue;
send signal to NIP;
}

send end-of-dat a;

¥

¥

Ki?nd end-of-data AJ)
NI P

for (I =mn_i; i <= max_i;

for (j =0; j <m +4) {
wait for signal from AP

send c[i][j] to processor O;

++i) {

k
¥

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Sparse Matrix Multiply on McDISC USC

UNIVERSITY

OF SOUTHERN

CALIFORNIA

Alist Blist (B transpose)

S

row | col | val |next row | col | val |next

Parallel Sparse Mtrix Miltiply
(I nner Loop)

ap = alist;
bp = blist;
while ((ap !'= NULL) && (ap->row == i) &%
(bp '= NULL) && (bp->row ==1i)) {
if (ap->col == bp->col) {
sum= sum + (ap->data * bp->data);
ap = ap->next;
bp = bp->next;
}
else if (ap->col < bp->col)
ap = ap->next;
else
bp = bp->next;
¥

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

Sparse Matrix Multiply on McDISC USC

N

while ((ap !'= NULL) &% (ap->row

(bp '= NULL) &% (bp->row
if (ap->col == bp->col) {
prefetch (ap->data);
prefetch (bp->data);
ap = ap->next;
bp = bp->next;
}
else if (ap->col < bp->col)
ap = ap->next;
else
bp = bp->next;

i) &
i)) {

by

else if (ap->col < bp->col)
else
Send EOD token to CP;

Send &J[i][j] to SAG
K§§nd signal and address to NIP; 44)

UNIVERSITY
OF SOUTHERN
CALIFORNIA
CP AP
sum = 0; ﬂ% = alist; ﬁ\
while (not EOD) bp = blist;
sum += LQ * LQ while ((ap '= NULL) &k (ap->row ==1i) &
send sumto SDQ (bp '= NULL) &% (bp->row == 1)) {
if (ap->col == bp->col) {
CI\P Put ap->data and bp->data in LQ
ap = ap->next;
(gb = alist; ﬂ\\ bp = bp->next;
bp = blist; }

ap = ap->next;

bp = bp->next;

NI P

wait for signal from AP;
send data to home node;

University of Southern California, Alvin M. Despain, Jean-Luc Gaudiot, Manil Makhija and Wonwoo Ro

