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New ldeas

* A dedicated processor for each level of the
memory hierarchy

* Explicitly manage each level of the memory hierarchy
using instructions generated by the compiler

» Hide memory latency by converting data
access predictability to data access locality

* Exploit instruction-level parallelism without
extensive scheduling hardware

« Zero overhead prefetches for maximal
computation throughput

Impact

* 2x speedup for scientific benchmarks with large data
sets over an in-order superscalar processor

* 7.4x speedup for matrix multiply over an in-order
issue superscalar processor

* 2.6x speedup for matrix decomposition/substitution over
an in-order issue superscalar processor

* Reduced memory latency for systems that have
high memory bandwidths (e.g. PIMs, RAMBUS)

* Allows the compiler to solve indexing functions for
irregular applications

* Reduced system cost for high-throughput scientific codes
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Technological Trend: Memory latency is getting longer relative to
microprocessor speed (40% per year)

Problem: Some SPEC benchmarks spend more than half of their time stalling
[Lebeck and Wood 1994]

Domain: benchmarks with large data sets: symbolic, signal processing and
scientific programs

Present Solutions: Multithreading (Homogenous), Larger Caches,
Prefetching, Software Multithreading
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Solution Limitations

Larger Caches — Slow

— Works well only if working set fits cache and
there is temporal locality.

Hardware Prefetching — Cannot be tailored for each application

— Behavior based on past and present execution-
time behavior

Software Prefetching — Ensure overheads of prefetching do not outweigh
the benefits > conservative prefetching

— Adaptive software prefetching is required to
change prefetch distance during run-time

— Hard to insert prefetches for irregular access
patterns

— Solves the throughput problem, not the memory
Multithreading latency problem
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A dedicated processor for each
level of the memory hierarchy

Explicitly manage each level of
the memory hierarchy using
instructions generated by the
compiler

Hide memory latency by
converting data access
predictability to data access
locality (Just in Time Fetch)

Exploit instruction-level
parallelism without extensive
scheduling hardware

Zero overhead prefetches for
maximal computation throughput
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« The Slip Control Queue (SCQ) adapts dynamically

if (prefetch_buffer_full ()
Don’t change size of SCQ;

else if (2*late_prefetches) > useful prefetches)
Increase size of SCQ;

else
Decrease size of SCQ;

— Late prefetches = prefetched data arrived after load had
been issued

— Useful prefetches = prefetched data arrived before load
had been issued
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Decoupling Programs for HIDISC-3 USC
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while (not end of loop)

y=y+(x>h)
send y to SDQ

Computation Processor Code

for j=0;j<1, +4)) {
load (x[]]);
load (h[i--1]);

for (= 0;) < ++) GET SCO:

yll=yl+x0I*h(i-1]);

}

Inner Loop Convolution send (EOD token)
send address of y[i] to SAQ

Access Processor Code

for j=0;j<i +4)) {
prefetch (x[j]);

prefetch (h[i--1];
PUT_SCQ;

Cache Management Code
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Benchmark Source of Lines of Description Data
Benchmark Source Set Size
Code
LLL1 Livermore Loops 20 1024-element 24 KB
[45] arrays, 100

iterations

LLL2 Livermore Loops 24 1024-element 16 KB
arrays, 100
iterations

LLL3 Livermore Loops 18 1024-element 16 KB
arrays, 100
iterations

LLL4 Livermore Loops 25 1024-element 16 KB
arrays, 100
iterations

LLLS Livermore Loops 17 1024-element 24 KB
arrays, 100
iterations

Tomcatv SPECfp95 [68] 190 33x33-element <64 KB
matrices, 5
iterations

MXM NAS kernels [5] 113 Unrolled matrix 448 KB
multiply, 2 iterations

CHOLSKY NAS kernels 156 Cholesky matrix 724 KB
decomposition

VPENTA NAS kernels 199 Invert three 128 KB
pentadiagonals
simultaneously

Qsort Quicksort sorting 58 Quicksort 128 KB

algorithm [14]

CALIFORNIA
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Parameter Value Parameter Value
FLC Size 4 KB SLC Size 16 KB
FLC Associativity 2 SLC Associativity 2

FLC Block Size 32B SLC Block Size 32B
Memory Latency varied Memory Contention Time varied
Victim Cache Size 32 Entries  Prefetch Buffer Size 8 entries
Load Queue Size 128 Store Address Queue Size 128
Store Data Queue Size 128 Total issue width 8
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2x speedup for scientific benchmarks with large data sets over an in-
order superscalar processor

7.4x speedup for matrix multiply (MXM) over an in-order issue
superscalar processor - (similar operations are used in ATR/SLD)

2.6x speedup for matrix decomposition/substitution (Cholsky) over
an in-order issue superscalar processor

Reduced memory latency for systems that have high memory
bandwidths (e.g. PIMs, RAMBUS)

Allows the compiler to solve indexing functions for irregular
applications

Reduced system cost for high-throughput scientific codes
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 Defined benchmarks » Continue simulations — ¢ Update Simulator ——
» Completed simulator of more benchmarks » Generate performance
» Performed instruction-level (ATR/SLD) statistics and evaluate
simulations on hand- *Define HIDISC design
compiled benchmarks architecture *Develop and test a
full decoupling
Y compiler v
April 98 April 99 April 00 May 01
Start End
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Summary USC
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A processor for each level of the memory hierarchy
Adaptive memory hierarchy management

Reduces memory latency for systems with high memory
bandwidths (PIMs, RAMBUS)

2x speedup for scientific benchmarks
3x speedup for matrix decomposition/substitution (Cholesky)

7x speedup for matrix multiply (MXM) (similar results expected
for ATR/SLD)
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» Distributed Processing

¢ Sensors
. Data /0 (disk farms)
. Multiprocessors

» Multiprocessing

¢ Mc Fisc-on-a-chip
¢ SMT/MT/I-structures
¢ VLSI layout/performance tradeoffs

» Applications
. Compute/database search and retrieval
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Problem: All extant, large-scale multiprocessors perform poorly
when faced with a tightly-coupled parallel program.

Reason: Extant machines have a long latency when
communication is needed between nodes. This long latency kills
performance when executing tightly-coupled programs. (Note
that multi-threading a la the Tera machine does not help when
there are dependencies.)

The McDISC solution: Provide the network interface processor
(NIP) with a programmable processor to execute not only OS
code (e.g. Stanford Flash), but user code, generated by the
compiler.

Advantage: The NIP, executing user code, fetches data before it
IS needed by the node processors, eliminating the network fetch
latency most of the time.

Result: Fast execution (speedup) of tightly-coupled parallel
programs.
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The McDISC System: Memory-Centered Distributed Instruction USC
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Parallel Mtrix Miltiply
pid = processor id
p = # of processors
min_i (pid/ p) * n;
max_i mni + (p/ n) - 1;

for (i =mn_i; i <= mx_i; ++i) {
for (j =0, j <m ++) {
c[i][j] = 0;
for (k =0; k <1; ++k) {
, c[i][j] = c[ill[i]l + ali]l[k] * b[KI[j];
}
}
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CP

N%ile (not end-of-data) {
while (not end-of-data) {
c = 0
while (not end-of-data) {
/* a and b from queue */
c =c¢c +a* b
}

send ¢ to store queue;

™~

}

N8 J

C\MP

L

e

ro(io=min_i; i <= max_i; ++) {0\
for (j =0; j <m ++j) {
for (k =0; k < 1; ++k) {
prefetch (a[i][k]);
prefetch (b[i][k]);
¥

AP
i <= max_i; ++i) {0\

ffor (i = min_i;
for (j =0; j <m ++4) {
for (k =0; k <1; ++k) {
load a[i][k] to | oad queue;
l oad b[i][k] to | oad queue;

}
send end-of-data to CP;

put &IJ[i][j] in store queue;
send signal to NIP;
}

send end-of-dat a;

¥

¥

Ki?nd end-of-data AJ)
NI P

for (I =mn_i; i <= max_i;

for (j =0; j <m +4) {
wait for signal from AP

send c[i][j] to processor O;

++i) {

k
¥
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Alist Blist (B transpose)

S

row | col | val |next row | col | val |next

Parallel Sparse Mtrix Miltiply
(I nner Loop)

ap = alist;
bp = blist;
while ((ap !'= NULL) && (ap->row == i) &%
(bp '= NULL) && (bp->row ==1i)) {
if (ap->col == bp->col) {
sum= sum + (ap->data * bp->data);
ap = ap->next;
bp = bp->next;
}
else if (ap->col < bp->col)
ap = ap->next;
else
bp = bp->next;
¥
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Sparse Matrix Multiply on McDISC USC

N

while ((ap !'= NULL) &% (ap->row

(bp '= NULL) &% (bp->row
if (ap->col == bp->col) {
prefetch (ap->data);
prefetch (bp->data);
ap = ap->next;
bp = bp->next;
}
else if (ap->col < bp->col)
ap = ap->next;
else
bp = bp->next;

i) &
i)) {

by

else if (ap->col < bp->col)
else
Send EOD token to CP;

Send &J[i][j] to SAG
K§§nd signal and address to NIP; 44)
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CP AP
sum = 0; ﬂ% = alist; ﬁ\
while (not EOD) bp = blist;
sum += LQ * LQ while ((ap '= NULL) &k (ap->row ==1i) &
send sumto SDQ (bp '= NULL) &% (bp->row == 1)) {
if (ap->col == bp->col) {
CI\P Put ap->data and bp->data in LQ
ap = ap->next;
(gb = alist; ﬂ\\ bp = bp->next;
bp = blist; }

ap = ap->next;

bp = bp->next;

NI P

wait for signal from AP;
send data to home node;
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