	Fetch Policy
	Method
	Pros
	Cons

	BR Count
	Priority given to the thread with the fewest unresolved branches
	Eliminate the relative penalty of speculative exe if branch is mis-predicted, perform better when # of thread increase
	

	LD Count
	Priority given to the thread with the fewest load
	Load tends to cause stall
	

	MEM Count
	Priority given to the thread with the fewest memory access
	Memory access tends to cause stall
	

	L1 Miss Count
	Priority given to the thread with the fewest L1 cache miss rate
	
	

	L1I Miss Count
	Priority given to the thread with the fewest L1 IC miss rate
	More detailed than L1 miss count, add a closer look at the caches
	Only the instruction cache are checked

	L1D Miss Count
	Priority given to the thread with the fewest L1 DC miss rate
	More detailed than L1 miss count, add a closer look at the caches
	Only the data cache are checked

	ICount
	Priority given to the thread with the fewest Instruction
	
	Does not address problems as directly as other policies,

	ACCIPC
	Priority given to the thread with the fewest accumulated IPC
	Look further into the past than ICOUNT
	Need to check the past history to get the information of IPC, Hard to implement

	Stall Count
	Priority given to the thread with the fewest # of stalls
	Easy
	

	RR
	Priority given in a Round Robin fashion
	Easy to implement
	No system conditions are considered

	IQPOSN
	Priority given to the thread whose oldest instruction is farthest from the head of IQ
	Thread with the oldest instruction intend to clog the IQ
	

	FPG
	Priority given to the thread with the fewest low-confidence branches
	More detailed than BR COUNT, use branch confidence estimator
	Need to check the past history of the thread to check the branch handling status

	AGSTALL
	Priority given to the thread with the easy branches
	Very similar to FPG, use a branch classifier that fill out biased branch instead of confidence estimator

	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

