Fetch Policy
1. Room for Improvement:

32-Slot Instruction Queue (IQ)

6 INT units / 3 FP units / Fetch bandwidth 8 IPC

IPC of ICOUNT is 4.45

IPC of certain improvement method is 5.18

IDEAL is 8

64-Slot Instruction Queue (IQ)

12 INT units / 6 FP units / Fetch bandwidth 8 IPC

IPC of ICOUNT is 5.39

IPC of certain improvement method is 6.17

IDEAL is 8

which means there’s still room for enhancement, even though we can never get to the ideal because of the limited ILP and TLP
2. Three source for Instruction Queue Clog

a. long latency instructions

such as FP multiply and divide, L1 D-Cache Miss

b. long data dependence chains
c. contention for functional units

such as if the thread is only INT-intensive or only FP-intensive
3. ICOUNT is far from the best
It does not take into account if a particular thread is in the correct path of execution or not.
It does not take into account if a particular thread will cause L1 cache miss or not.

Which would cause the IQ filled with wrong path instructions (wasted resource utilization) or fill with instructions that can not be executed for a long time (underutilize the resources)

To solve the problem of branch mis-prediction, from my point view, a better way is to employ confidence estimator. This estimator uses a table of miss distance counter (MDC). Correctly predicted branches increment the corresponding MDC entry, whereas incorrectly predicted branches reset the MDC entry to zero. Thus the value of the MDC indicates the level of confidence. This scheme is called Fetch Prioritizing and Gating (FPG) scheme, which out-performs BRCOUNT.
To solve the problem of load miss, from my point of view, a better way is to employ load miss predictor (which is incorporated in ALPHA 21264). We can use a 2K-entry table of two bit saturating counters(indexed by the PC of the load) which are cleared on a miss and incremented on a hit, and whose most significant bit determines the prediction, provides an overall hit/miss prediction accuracy of 95%. This method is called Predictive Data Miss Gating (PDG) scheme, which outperforms L1MISSCONT
To increase the efficiency of the IQ, from my point of view, a better way is to limit the number of NOT READY instructions (those with one or more source operands not available).a particular thread’s Unready Instruction Counter (UIC) is incremented for each instruction from that thread dispatched into IQ in a NOT READY condition. This information is usually obtained from a lookup table (e.g., the Busy Bit Tables in the MIPS R10000) at a dispatch time. Each such instruction is tagged by a UNREADY bit. The UIC is decremented for each issue instruction with the UNREADY bit. Any thread whose UIC exceeds a particular threshold is blocked from fetching. This method is called Unready Counting Gate (UCG) scheme, which outperform ICOUNT.
In Cholho’s work, it’s indicated no single fetch policy works for all the situations. Cholho propose a alternation among three fetch policies, ICOUNT, BRCONT and L1MISSCONT. However, all the three fetch policies I mentioned above perform better than each of them.

Originally I want to propose a dynamic fetch policy with cache miss prediction with profiling, but this is similar to the idea of Predictive Data Miss Gating (PDG) scheme done by Tullsen, et al. which can be realized using a load miss predictor.
Since no fetch policy works for all the situation, then next generation fetch policy should be kind of hybrid policy, e.g., on the top of ICOUNT or some other scheme. Also take into consideration of power issue. The issue queue may be a major source of power dissipation. For example, in the ALPHA 21264, the INT issue queue is the highest power consuming function block on the chip. The issue queue may also have a high power density, which may lead to hot spot problems. We need fetch policy that reduces the occupancy of the issue without unduly impacting performance. So that we can reduce the power consumption. Is it possible to construct a dynamic issue queue?
