Fetch Policy
As we mentioned last time, there are three source for Instruction Queue Clog

a. long latency instructions

such as FP multiply and divide, L1 D-Cache Miss

b. long data dependence chains
c. contention for functional units

such as if the thread is only INT-intensive or only FP-intensive
For case a)

When a thread experience a very long-latency operation, such as a load miss, the thread will eventually stall, potentially holding resources which other threads could be using to make forward progress. This happens when the memory-bound thread constantly fills the instruction scheduling window with instructions that can not be issues due to dependence on these long-latency operations (which is case b). The co-scheduled thread cannot get enough instructions into the processor to expose the parallelism needed to hide the latency of the memory operation.
How to solve it?

One way is “flushing”, to force threads waiting for long-latency loads to give up resources, using the same mechanism used for branch mis-predictions, allowing the thread to resume fetching once the load returns from memory. (Tullsen 2001)
Another way is the cache miss prediction, we talked about it last time, using the load-miss predictor scheme(Ali Elmorsy, David H. Albonesi HPCA 2003)

Third way is cache pre-fetching, I still need to dig into it more, which I’m very interested in. There are several papers need to study.
